Abstract

Recently, studies have used search query volume (SQV) data to forecast a given process of interest. However, Google Trends SQV data comes from a periodic sample of queries. As a result, Google Trends data is different every week. We propose a Dynamic Linear Model that treats SQV data as a representation of an unobservable process. We apply our model to forecast the number of hotel nonresident registrations in Puerto Rico using SQV data downloaded in 11 different occasions. The model provides better inference on the association between the number of hotel nonresident registrations and Google Trends SQV than using Google Trends data retrieved only on one occasion. Furthermore, our model results in more realistic prediction intervals of forecasts. However, compared to simpler models we only find evidence of better performance for our model when making forecasts on a horizon of over 6 months.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.