Abstract

Backward induction is a widely accepted principle for predicting behavior in sequential games. In the classic example of the game'', however, players frequently violate this principle. An alternative is a dynamic level-k model, where players choose a rule from a rule hierarchy. The rule hierarchy is iteratively defined such that the level-k rule is a best-response to the level-(k-1) rule and the level-infinity rule corresponds to backward induction. Players choose rules based on their best guesses of others' rules and use historical plays to improve their guesses. The model captures two systematic violations of backward induction in centipede games, limited induction and repetition unraveling. Since the dynamic level-k model always converges to backward induction over repetition, the former can be considered to be a tracing procedure for the latter. We also examine the generalizability of the dynamic level-k model by applying it to explain systematic violations of backward induction in sequential bargaining games. We show that the same model is capable of capturing these violations in two separate bargaining experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.