Abstract
This work aims at the development of a Lagrangian large eddy simulation (LES) scheme. The scheme is based on the filtered vorticity transport equation and on modeling the effects of subfilter scale (SFS) velocity and vorticity fluctuations using a dynamic eddy diffusivity model. The dynamic implementation of the model relies on multiple filtering in order to determine model coefficients from the resolved data. The performance of the dynamic SFS model is examined usinga prioritests that are based on direct numerical simulations of forced, homogeneous, isotropic turbulence. The tests show a fair correlation of the model with SFS convection of vorticity. In addition, the computed value of the dynamic model coefficient is in good agreement with predictions based on enstrophy balances. Finally, the direct numerical simulation data is used to compare a three-dimensional particle representation of the model with spectral evaluations. The tests show that when the particle representation is sufficiently resolved, the Lagrangian model predictions are in good agreement with spectral results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Computational Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.