Abstract

A variation of the previous dynamic lattice searching (DLS) method, named as DLS with constructed core (DLSc), was proposed for structural optimization of Lennard-Jones (LJ) clusters. In the new method, the starting random structure is generated with an icosahedron or a decahedron as a core. For a cluster with n shells, the atoms in the inner n - 2 shells are set as a fixed core, and the remaining atoms in the outer 2 shells are optimized by DLS. With applications of DLSc to optimization of LJ100-200 and LJ660-670, it was found that all the putative global minima can be obtained by using the DLSc method, and the method was proved to be high efficient compared with the previous DLS, because the searching space is reduced by the use of the fixed core. However, although DLSc is still an unbiased approach for smaller LJ clusters, it turned out to be biased for large ones. Further works are still needed to make it to be a more general method for cluster optimization problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.