Abstract

We investigate the structural properties of a finite horizon, discrete time single product inventory rationing problem, where we allow random replenishment (production) opportunities. In contrast to the standard models of dynamic capacity control in revenue management or production/inventory systems, we assume that the demand/production rates are not known with certainty but lie in some interval. To address this uncertainty, we formulate a robust stochastic dynamic program and show how the structural properties of the optimal policy propagate to the robust counterpart of the problem. Further, we explore how the optimal policy changes with respect to the uncertainty set. We also show that our results can be extended to certain alternative robust formulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.