Abstract

With the increasing popularization and application of the smart grid, the harm of the data silo issue in the smart grid is more and more prominent. Therefore, it is especially critical to promote data interoperability and sharing in the smart grid. Existing data-sharing schemes generally lack effective incentive mechanisms, and data holders are reluctant to share data due to privacy and security issues. Because of the above issues, a dynamic incentive mechanism for smart grid data sharing based on evolutionary game theory is proposed. Firstly, several basic assumptions about the evolutionary game model are given, and the evolutionary game payoff matrix is established. Then, we analyze the stabilization strategy of the evolutionary game based on the payoff matrix, and propose a dynamic incentive mechanism for smart grid data sharing based on evolutionary game theory according to the analysis results, aiming to encourage user participation in data sharing. We further write the above evolutionary game model into a smart contract that can be invoked by the two parties involved in data sharing. Finally, several factors affecting the sharing of data between two users are simulated, and the impact of different factors on the evolutionary stabilization strategy is discussed. The simulation results verify the positive or negative incentives of these parameters in the data-sharing game process, and several factors influencing the users’ data sharing are specifically analyzed. This dynamic incentive mechanism scheme for smart grid data sharing based on evolutionary game theory provides new insights into effective incentives for current smart grid data sharing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call