Abstract

In the development of cluster-based energy-efficient protocols for wireless sensor networks (WSNs), a particularly challenging problem is the dynamic organization of sensors into a wireless communication network and the routing of sensed information from the field sensors to a remote base station (BS) in a manner that prolongs the lifetime of WSNs. This paper presents a new energy-efficient clustering protocol for WSNs, which can minimize total network energy dissipation while maximizing network lifetime. The protocol is divided into two parts. The first deals with constructing an infrastructure for the given WSN. A newly developed algorithm, based on a harmony search (HS), automatically determines the optimal number of clusters and allocates sensors into these clusters. This algorithm also eliminates the need to set the number of clusters a priori. The second part is concerned with the process of sending sensed data from nodes to their cluster head and then to the BS. A decentralized fuzzy clustering algorithm is proposed, where the selection of cluster heads in each round is locally made in each cluster during the network lifetime. Simulation results demonstrate that the proposed protocol can achieve an optimal number of clusters, prolong the network lifetime and increase the data delivery at the BS, when compared to other well-known clustering-based routing protocols.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.