Abstract

In this paper, we propose a stabilization method for dynamic gaits of quadrupedal walking robots covering a wide range of speeds and various types of gait. Our stabilization method is based on adjusting the contact time between the four legs and ground. By modulating the contact time, the impact applied to the body can be controlled and stabilized. The stability provided by the proposed algorithm was proved in the sense of Lyapunov. The proposed algorithm also demonstrated robust performance under large external disturbances, and the performance was compared with other algorithms through simulations. Simulation results of bounding gaits under different ground conditions were compared, and the various types of stable gait implemented by the proposed algorithm are also presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.