Abstract
We consider a mathematical model which describes the frictional contact between a viscoelastic body and a reactive foundation. The process is assumed to be dynamic and the contact is modeled with a general normal damped response condition and a local friction law. We present a variational formulation of the problem and prove the existence and uniqueness of the weak solution, using results on evolution equations with monotone operators and a fixed point argument. We then introduce and study a fully discrete numerical approximation scheme of the variational problem, in terms of the velocity variable. The numerical scheme has a unique solution. We derive error estimates under additional regularity assumptions on the data and the solution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.