Abstract

ABSTRACTIn this paper, the problem of asynchronous control for singular Markov jump systems with redundant channels under the dynamic event-triggered scheme is studied. To save the resource of bandwidth limited network, a dynamic event-triggered scheme is proposed. The technique of redundant channels is employed to improve the successful rate of the communication network, which are modelled as two mutually independent Bernoulli-distributed random variables. A hidden Markov model is proposed to formulate the asynchronisation phenomena between the system modes and the controller modes, which results in the fact that the closed-loop system is a singular hidden Markov jump system. The criteria of regular, causal and stochastically stable with a certain performance for the closed-loop system are obtained. The co-design of asynchronous controllers and the dynamic event-triggered scheme is proposed in terms of a group of feasible linear matrix inequalities. A numerical example and a practical example are presented to show the effectiveness of the developed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.