Abstract

In this article, the nonfragile filtering issue is addressed for complex networks (CNs) with switching topologies, sensor saturations, and dynamic event-triggered communication protocol (DECP). Random variables obeying the Bernoulli distribution are utilized in characterizing the phenomena of switching topologies and stochastic gain variations. By introducing an auxiliary offset variable in the event-triggered condition, the DECP is adopted to reduce transmission frequency. The goal of this article is to develop a nonfragile filter framework for the considered CNs such that the upper bounds on the filtering error covariances are ensured. By the virtue of mathematical induction, gain parameters are explicitly derived via minimizing such upper bounds. Moreover, a new method of analyzing the boundedness of a given positive-definite matrix is presented to overcome the challenges resulting from the coupled interconnected nodes, and sufficient conditions are established to guarantee the mean-square boundedness of filtering errors. Finally, simulations are given to prove the usefulness of our developed filtering algorithm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call