Abstract
Integrating dynamic analysis models into geographic information system (GIS)-based evacuation simulations is important yet complex. Different models must be smoothly assembled according to the data processing flow to obtain a dynamic, data-forced evacuation simulation. However, because of the diversity of data types and dynamic data updating among different models, closely integrated evacuation simulations are complex and inefficient. In this study, geometric algebra (GA) is introduced to develop a dynamic evacuation simulation framework for a hazardous gas diffusion scheme. In the framework, geospatial data are first integrated into a unified virtual scene with different forms of multivector representation. The major simulation models of gas diffusion, risk assessment, and dynamic evacuation routing compose the major steps of the evacuation simulation. On the basis of the generalized multivector structure, dynamic exchange and updating geospatial data at different evacuation steps can be performed seamlessly with the multivector structure and GA operators. The framework is tested with a case study of a three-dimensional residential area, which shows that our framework can support the integration of dynamic evacuation processes and the model integration is direct and smooth. This framework may also provide a new solution for the integration and dynamic data updating in spatiotemporal GIS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.