Abstract

Mobile edge caching has emerged as a new paradigm to provide computing, networking resources, and storage for a variety of mobile applications. That helps achieve low latency, high reliability, and improve efficiency in handling a very large number of smart devices and emerging services (e.g., IoT, industry automation, virtual reality) in mobile 5G networks. Nonetheless, the development of mobile edge caching is challenged by the decentralized nature of edge nodes, their small coverage, limited computing, and storage resources. In this article, we first give an overview of mobile edge caching in 5G networks. After that, its key challenges and current approaches are discussed. We then propose a novel caching framework. Our framework allows an edge node to authorize the legitimate users and dynamically predicts and updates their content demands using the matrix factorization technique. Based on the prediction, the edge node can adopt advanced optimization methods to determine optimal content to store so as to maximize its revenue and minimize the average delay of its mobile users. Through numerical results, we demonstrate that our proposed framework provides not only an effective caching approach, but also an efficient economic solution for the mobile service provider.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.