Abstract

We describe, devise, and augment dynamic data-driven application simulations (DDDAS). DDDAS offers interesting computational and mathematically unsolved problems, such as, how do you analyze, compute, and predict the solution of a generalized PDE when you do not know either where or what the boundary conditions are at any given moment in the simulation in advance? A summary of DDDAS features and why this is a intellectually stimulating new field are included in the paper. We apply the DDDAS methodology to some examples from a contaminant transport problem. We demonstrate that the multiscale interpolation and backward in time error monitoring are useful to long running simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.