Abstract

We consider a mathematical model which describes the frictional contact between a deformable body and a foundation. The process is assumed to be dynamic and the material behavior is described by a elastic–viscoplastic constitutive law with damage. The frictional contact is modeled with subdifferential boundary conditions. We derive the variational formulation of the problem which is a coupled system of a hemivariational inequality for the displacement and a parabolic variational inequality for the damage field. Then we prove the existence of a unique weak solution to the model. The proof is based on arguments of hyperbolic hemivariational inequality, a classical existence, and uniqueness result on parabolic inequalities and a fixed point argument.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.