Abstract

The 2015 Middle East respiratory syndrome (MERS) outbreak in the Republic of Korea has provided an opportunity to improve our understanding of the spread of MERS linked to healthcare settings. Here we designed a dynamic transmission model to analyze the MERS outbreak in the Republic of Korea based on confirmed cases reported during the period May 20–July 4, 2015. Our model explicitly incorporates superspreading events and time-dependent transmission and isolation rates. Our model was able to provide a good fit to the trajectory of the outbreak and was useful to analyze the role of hypothetical control scenarios. Specifically, we assessed the impact of the timing of control measures, especially associated with a reduction of the transmission rate and diagnostic delays on outbreak size and duration. Early interventions within 1week after the epidemic onset, for instance, including the initial government announcement to the public about the list of hospitals exposed to MERS coronavirus (MERS-CoV), show a promising means to reduce the size (>71%) and duration (>35%) of the MERS epidemic. Finally, we also present results of an uncertainty analysis focused on the role of superspreading events.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.