Abstract

Hierarchical local nonlinear dynamic feature learning is of great importance for soft sensor modeling in process industry. Convolutional neural network (CNN) is an excellent local feature extractor that is suitable for process data representation. In this paper, a dynamic CNN (DCNN) strategy is designed to learn hierarchical local nonlinear dynamic features for soft sensor modeling. In DCNN, each 1D process sample is dynamically augmented into 2D data sample with lagged unlabeled process variables, which contains both spatial cross-correlations and temporal auto-correlations. Then, the convolutional and pooling layers are alternately utilized to extract the local nonlinear spatial–temporal feature from the 2D sample data matrix. Moreover, the principle is analyzed for DCNN on how it can learn the local nonlinear spatial–temporal feature from the network. The effectiveness of proposed DCNN is verified on an industrial hydrocracking process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.