Abstract

Objective. This study was undertaken to evaluate the performance of a new dynamic laboratory model of the stance phase of gait. Design. Five cadaver feet were repetitively tested in the apparatus. Background. Typical biomechanical investigations of cadaver feet simply place a static load on the tibia. The present system was designed to better simulate the changing in-vivo loading environment of the foot and ankle during gait. Methods. The device mimics the behavior of the tibia, foot, and ankle from heel-strike to toe-off by reproducing the physiologic actions of five extrinsic foot muscles and physiologic motion at the proximal tibia. To verify its utility, cadaver gait simulations were conducted while measuring applied muscle forces, ground reaction forces, and plantar pressures. Results. Dynamic muscle forces were consistently delivered to within 10% of pre-programmed values. Dynamic measurements of ground reaction forces and plantar pressure were similar to those measured in healthy human subjects. Peak vertical ( y), foreaft ( x) and medio-lateral ( z) forces were 110, 18, and 4% of body weight respectively. Compressive force in the tibial shaft reached 410% of body weight.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.