Abstract
The human figure exhibits complex and rich dynamic behavior that is both nonlinear and time-varying. However most work on tracking and synthesizing figure motion has employed either simple, generic dynamic models or highly specific hand-tailored ones. Recently, a broad class of learning and inference algorithms for time-series models have been successfully cast in the framework of dynamic Bayesian networks (DBNs). This paper describes a novel DBN-based switching linear dynamic system (SLDS) model and presents its application to figure motion analysis. A key feature of our approach is an approximate Viterbi inference technique for overcoming the intractability of exact inference in mixed-state DBNs. We present experimental results for learning figure dynamics from video data and show promising initial results for tracking, interpolation, synthesis, and classification using learned models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.