Abstract

This paper proposes a backup path management method for time division multiple access (TDMA) based client wireless mesh networks (WMNs). In a TDMA based client WMN, as links/nodes fail or as nodes perform handover and as flows enter and leave the network, the paths between various nodes change as well as the bandwidth available along these paths. In these networks, to support the quality of service requirements of flows, backup paths with the required bandwidth need to be established dynamically. Some methods are proposed in the literature to establish backup paths which handle link/node failures and node handover in ad hoc networks, but none of these methods can provide backup paths with the required bandwidth dynamically. To address that issue, the present paper proposes a backup path management method which is adaptive to both topological changes and traffic changes in a network. Each node along the current path between a source and a destination finds backup paths with the required bandwidth in order to handle failure of the link to its downstream node and its own failure or handover. Nodes use two-hop neighborhood information and slots status information of two-hop neighbors to establish backup paths. We prove that the number of backup paths available when a node N searches for backup paths to handle its own failure are more than the number of backup paths available when some other node searches for the backup paths for the failure of node N. Performance of the proposed method is compared with the performance of a naive path management (NPM) method in which always the source establishes backup paths whenever a link/node fails or a node performs handover, and also with the performance of a backup path management method proposed in the literature. The proposed method significantly outperforms the NPM method and the method selected from the literature. For example, when the speed of the mobile nodes is 50 m/s, the packet delivery ratio with the proposed method is 63 % more than the NPM method and 35 % more than the method selected from the literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.