Abstract

We introduce a novel on-line biomonitoring system based on a valvometric conversion technique for clam Corbicula fluminea, allowing for rapid, continuous, and ecological relevant water quality control. Our model builds upon the basic principles of biological early warning system model in two ways. We first adopted a risk-based methodology to build a dynamic artificial clam for simulating how the bivalve closure rhythm in response to waterborne copper (Cu) and cadmium (Cd). Secondly, we integrated a probabilistic model associated with the time-varying dose–response relationships of valve closing behavior into the mechanisms of a dynamic artificial clam, allowing estimation of the time-varying waterborne Cu/Cd concentrations for on-line providing the outcomes of the toxicity detection technique. Measurements with Cu/Cd were performed and the calculated EC50 values were compared with published data for the valve movement test with C. fluminea. This proposed dynamic artificial clam provides a better quantitative understanding of on-line biomonitoring measurements of waterborne metals and may foster applications in clam farm management strategy and ecotoxicological risk assessment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call