Abstract
Nowadays multimodal image fusion has been majorly utilized as an important processing tool in various image related applications. For capturing useful information different sensors have been developed. Mainly such sensors are infrared (IR) image sensor and visible (VI) image sensor. Fusing both these sensors provides better and accurate scene information. The major application areas where this fused image has been mostly used are military, surveillance, and remote sensing. For better identification of targets and to understand overall scene information, the fused image has to provide better contrast and more edge information. This paper introduces a novel multimodal image fusion method mainly for improving contrast and as well as edge information. Primary step of this algorithm is to resize source images. The 3×3 sharpen filter and morphology hat transform are applied separately on resized IR image and VI image. DWT transform has been used to produce "low-frequency" and "high-frequency" sub-bands. "Filters based mean-weighted fusion rule" and "Filters based max-weighted fusion rule" are newly introduced in this algorithm for combining "low-frequency" sub-bands and "high-frequency" sub-bands respectively. Fused image reconstruction is done with IDWT. Proposed method has outperformed and shown improved results in subjective manner and objectively than similar existing techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.