Abstract

A recent ultraviolet snaphsot imaging survey of the nuclei of nearby galaxies detected a compact nuclear ultraviolet source in only five of the 26 LINERs (low-ionization nuclear emission-line regions) included in the observed sample. Motivated by this observational result, we examine the possibility that all LINERs are powered by photoionization from a nuclear source, which is, however, active only for 20% of the time. We show that decay times of low-ionization species can be of the order of one to a few centuries, and we demonstrate through time-dependent photoionization calculations that if the nuclear ionizing source is active for only a fraction of the time, this would not be readily noticeable in the emission-line spectrum. We suggest that the activity cycle is related to episodic accretion events which are associated with the tidal disruption of stars by a central black hole. The time interval between tidal disruptions is of the same order as the emission-line decay time, with the accretion episode following each disruption lasting a few decades. These estimates appear to support the duty cycle hypothesis. Some observational consequences of the proposed scenario are also discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.