Abstract

A new efficient direct simulation Monte Carlo (DSMC) method is proposed for the simulation of microporous media based on the dusty gas model (DGM). Instead of simulating gas flow through a microporous medium with a complex geometry of micropores that mimics the physical pore morphology, the DGM-DSMC method replaces it with the gas flow through a system of randomly distributed motionless virtual particles with simple spherical shapes confined in the considered domain. In addition, the interactions of gas molecules with the porous particles are simulated stochastically. For the aim of our study, the DGM is implemented in Bird’s two-dimensional DSMC code. The obtained results for the average velocity of gas flow through microscale porous media with given porosity are verified for different pressure gradients with those reported in the literature where porous particles are modeled physically in the domain. Thereafter, the effective parameters in porous media such as porosity, particle diameter, and rarefaction on flow behavior including velocity profile, apparent gas permeability, and mass flow rate are investigated. A comparison with the results predicted by the Open source Field Operation and Manipulation (OpenFOAM) software suggests that the employed DGM-DSMC is more accurate in highly porous media and its computational cost is considerably low.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call