Abstract
Rings and gaps are among the most widely observed forms of substructure in protoplanetary disks. A gap–ring pair may be formed when a planet carves a gap in the disk, which produces a local pressure maximum following the gap that traps inwardly drifting dust grains and appears as a bright ring owing to the enhanced dust density. A dust-trapping ring would provide a promising environment for solid growth and possibly planetesimal production via the streaming instability. We present evidence of dust trapping in the bright ring of the planet-hosting disk Elias 2-24, from the analysis of 1.3 and 3 mm Atacama Large Millimeter/submillimeter Array observations at high spatial resolution (0.″029, 4.0 au). We leverage the high spatial resolution to demonstrate that larger grains are more efficiently trapped and place constraints on the local turbulence (8 × 10−4 < α turb < 0.03) and the gas-to-dust ratio (Σ g /Σ d < 30) in the ring. Using a scattering-included marginal probability analysis, we measure a total dust disk mass of Mdust=13.8−0.5+0.7×10−4M⊙ . We also show that at the orbital radius of the proposed perturber the gap is cleared of material down to a flux contrast of 10−3 of the peak flux in the disk.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.