Abstract

Bioprosthetic leaflets made from animal tissues are used in the majority of surgical and transcatheter cardiac valve replacements. This study develops a new surgical bioprosthesis, using porcine pericardial leaflets. Porcine pericardium was obtained from genetically engineered pigs with a mutation in the GGTA-1 gene (GTKO) and fixed in 0.6% glutaraldehyde, and used to develop a new surgical valve design. The valves underwent in vitro hydrodynamic test in a pulse duplicator and high-cycled accelerated wear testing and were evaluated for acute haemodynamics and thrombogenicity in a juvenile sheep implant study for 48 h. The porcine surgical pericardial heart valves (pSPHVs) exhibited excellent hydrodynamics and reached 200 million cycles of in vitro durability, with no observable damage. Juvenile sheep implants demonstrated normal valve function with no acute thrombogenic response for either material. The pSPHV incorporates a minimalistic construction method using a tissue-to-tissue design to cover the stent. This new design is a proof of concept alternative to the use of bovine pericardium and synthetic fabric in surgical bioprosthetic heart valves.

Highlights

  • Surgical bioprosthetic heart valves (BHVs) have been the gold standard treatment for patients suffering from severe cardiac valve diseases

  • We have previously reported biochemical and physical equivalence of glutaraldehyde-fixed porcine pericardium derived from standard pigs and from pigs with an engineered mutation in the GGTA1 gene to block expression of the galactose α 1,3 galactose (Gal) antigen (GTKO pigs) [23]

  • accelerated wear test (AWT) was used to assess the durability of the porcine surgical pericardial heart valves (pSPHVs)

Read more

Summary

Introduction

Surgical bioprosthetic heart valves (BHVs) have been the gold standard treatment for patients suffering from severe cardiac valve diseases. Contrary to mechanical heart valves (MHVs), BHVs do not require long-term anticoagulation therapy which is associated with high risk of thromboembolic complications and haemorrhage [1]. SVD is associated with leaflet calcification, fibrosis, and tearing [2, 3] which lead to irreversible valve deterioration and haemodynamic disruption [4]. Despite these limitations, the use of BHVs is increasing compared with MHVs [5,6,7,8,9]. BHVs have been typically made by sewing glutaraldehyde-fixed bovine pericardium or porcine aortic valve tissue on a fabric covered polymeric or metal stent.

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.