Abstract
Improvement of activity, selectivity, and stability of the catalyst used in Fischer-Tropsch synthesis (FTS) to produce targeted hydrocarbon products has been a major challenge. In this work, the potassium-doped iron-carbide/alumina (K-Fe5C2/Al2O3), as a durable nanocatalyst containing small iron-carbide particles (∼ 10 nm), was applied to high-temperature Fischer-Tropsch synthesis (HT-FTS) to optimize the production of linear alpha olefins. The catalyst, suitable under high space velocity reaction conditions (14–36 N L gcat−1 h−1) based on the well-dispersed potassium as an efficient base promoter on the active iron-carbide surface, shows very high CO conversion (up to ∼90%) with extremely high activity (1.41 mmolCO gFe−1 s−1) and selectivity for C5–C13 linear alpha olefins.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.