Abstract
This paper proposes a ductile tearing assessment diagram (TAD) to predict the load resistance to the crack extension relationship during the stable tearing process of the circular-hollow-section (CHS) joints under the reversed in-plane bending actions. The tearing assessment diagram utilizes the envelope of the load-deformation curve from the fracture test under reversed loadings to build the connection among the fracture resistance, load resistance and crack extension. To verify the proposed approach, this study performs fracture experiments, imposing the reversed in-plane bending on the CHS X-joints, made of Q345 steel, with a surface crack near the weld toe. The experimental investigation reveals the effect of the reversed loading on the fracture resistance and validates the TAD-based assessment for tubular joints. Meanwhile, this study performs the cyclic fracture test on the single-edge-notched-tension [SE(T)] specimen made of Q345 steel and derives the TAD from the experimental record of the SE(T) specimen. The specimen-based assessment successfully predicts the load versus crack extension relation for the reported joints under reversed loadings. The study provides a basic framework to predict the joint response under reversed loadings by integrating the material fracture characteristics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.