Abstract

A fracture criterion derived from a microscopic point of view is proposed and has proved to be effective in the analysis of uniaxial tension. On the one hand, a method of predicting a ductile fracture is proposed using a three-dimensional void model and the assumption of velocity discontinuity. The relationship between the void volume fraction and the critical strain to fracture, calculated with the help of the new model, shows the same tendency as that obtained from the modified Thomason model. On the other hand, the mechanical and metallographic analyses of the uniaxial tension experiment are performed using four kinds of carbon steel. The relationship between the void volume fraction and the critical strain to fracture, calculated from the new model, agrees better with the result obtained from the experiment, rather than that calculated by the modified Thomason model, which confirms the validity of the ductile fracture criterion based on the three-dimensional void model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call