Abstract

The duality principle for Gabor frames states that a Gabor sequence obtained by a time–frequency lattice is a frame for L 2 ( R d ) if and only if the associated adjoint Gabor sequence is a Riesz sequence. We prove that this duality principle extends to any dual pairs of projective unitary representations of countable groups. We examine the existence problem of dual pairs and establish some connection with classification problems for II 1 factors. While in general such a pair may not exist for some groups, we show that such a dual pair always exists for every subrepresentation of the left regular unitary representation when G is an abelian infinite countable group or an amenable ICC group. For free groups with finitely many generators, the existence problem of such a dual pair is equivalent to the well-known problem about the classification of free group von Neumann algebras.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.