Abstract

We demonstrate an equivalence between two integrable flows defined in a polynomial ring quotiented by an ideal generated by a polynomial. This duality of integrable systems allows us to systematically exploit the Korteweg-de Vries hierarchy and its tau-function to propose amplitudes for non-compact topological gravity on Riemann surfaces of arbitrary genus. We thus quantize topological gravity coupled to non-compact topologica matter and demonstrate that this phase of topological gravity at N = 2 matter central charge larger than three is equivalent to the phase with matter of central charge smaller than three.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.