Abstract

Multicast is an important collective communication operation on multicomputer systems, in which the same message is delivered from a source node to an arbitrary number of destination nodes. The star graph interconnection network has been recognized as an attractive alternative to the popular hypercube network. In this paper, we first address a dual-hamiltonian-path-based routing model with two virtual channels based on two hamiltonian paths (HPs) and a network partitioning strategy for wormhole-routed star graph networks. Then, we propose three efficient multicast routing schemes on basis of such a model. All of the three proposed schemes are proved deadlock-free. The first scheme, network-selection-based dual-path routing, selects subnetworks that are constructed either by the first HP or by the second HP for dual-path routing. The second one, optimum dual-path routing, selects subnetworks with optimum routing path for dual-path routing. The third scheme, two-phase optimum dual-path routing, includes two phases, source-to-relay and relay-to-destination. Finally, experimental results are given to show that our proposed three routing schemes outperform the unicast-based, the HP, and the single-HP-based dual-path routing schemes significantly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.