Abstract

The abrupt changes in the sensor measurements indicating the occurrence of an event are the major factors in some monitoring applications of IoT networks. The prediction-based approach for data aggregation in wireless sensor networks plays a significant role in detecting such events. This paper introduces a prediction-based aggregation model for sensor selection named the Grey prediction model and the Kalman filter-based data aggregation model with rank-based mutual information (GMKFDA-MI) that has a dual synchronization mechanism for aggregating the data and selecting the nodes based on prediction and cumulative error thresholds. Furthermore, the nodes after deployment are clustered using K-medoids clustering along with the Salp swarm optimization algorithm to obtain an optimized aggregator position concerning the base station. An efficient clustering promises energy efficiency and better connectivity. The experiments are accomplished on real-time datasets of air pollution monitoring applications and the results for the proposed method are compared with other similar state-of-the-art techniques. The proposed method promises high prediction accuracy, low energy consumption and enhances the throughput of the network. The energy-saving is recorded to be more than 10 to 30% for the proposed model when compared with other similar approaches. Also, the proposed method achieves 97.8% accuracy as compared to other methods. The method proves its best working efficiency in the applications like event reporting, target detection, and event monitoring.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call