Abstract

Renewable energy sources are being expanded globally in response to global warming. Solar power generation is closely related to solar radiation and typically experiences significant fluctuations in solar radiation hours during periods of high solar radiation, leading to substantial inaccuracies in power generation predictions. In this paper, we suggest a solar power generation prediction method aimed at minimizing prediction errors during solar time. The proposed method comprises two stages. The first stage is the construction of the Solar Base Model by extracting characteristics from input variables. In the second stage, the prediction error period is detected using the Solar Change Point, which measures the difference between the predicted output from the Solar Base Model and the actual power generation. Subsequently, the probability of a weather forecast state change within the error occurrence period is calculated, and this information is used to update the power generation forecast value. The performance evaluation was restricted to July and August. The average improvement rate in predicted power generation was 24.5%. Using the proposed model, updates to weather forecast status information were implemented, leading to enhanced accuracy in predicting solar power generation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.