Abstract

A dual-specificity phosphatase MKP1 negatively regulates the activity of MPK6 by dephosphorylating it and acts as a positive regulator of blue light (BL)-mediated photomorphogenic development in Arabidopsis. Reversible phosphorylation of proteins is one of the major post-translational modifications in nearly all signaling pathways in plants. MAP kinase phosphatases are very crucial in the regulation of MAPKs as they dephosphorylate both threonine (Thr) and tyrosine (Tyr) residues within the T-X-Y motif of active MAPKs. Therefore, to gain insight of involvement of MAP kinase phosphatases in the regulation of light signaling, we searched for the potential phosphatase which may regulate the function of MPK6, a negative regulator of blue light (BL)-mediated photomorphogenic development. We report here the identification of a dual-specificity phosphatase, MAP kinase phosphatase 1 (MKP1) as a positive regulator of BL-mediated seedling development. Overexpression of MKP1 enhances the BL-induced inhibition of hypocotyl elongation and displays more opened cotyledons. We also show that MKP1OE accumulates more pigments and positively affects the expression of downstream light-related genes in response to BL. In vitro and in vivo evidences also demonstrate that MKP1 not only interacts with but also dephosphorylates MPK6 in BL. In addition, MKP1 regulates stability as well as activity of MPK6 upon BL. Taken together our study highlights the important role of phosphatases in the regulation of a signaling pathway and identifies the role of MKP1 in the negative regulation of MPK6 activity leading to a change in BL-induced photomorphogenic responses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call