Abstract

Adsorbed methane makes up a large portion of the total shale gas-in-place (GIP) resource in deep shale formations. In order to accurately estimate the shale GIP resource, it is crucial to understand the relationship between the adsorbed methane quantity and the free methane quantity of shale gas in shale formations (under high pressure conditions). This work describes and accurately predicts high pressure methane adsorption behavior in Longmaxi shale (China) using a dual-site Langmuir model. Laboratory measurements of high pressure methane adsorption (303–355K and up to 27MPa) are presented. Our findings show that for depths greater than 1000m (>15MPa) in the subsurface, the shale gas resources have historically been significantly overestimated. For Longmaxi shale (2500–3000m in depth), classical approaches overestimate the GIP by up to 35%. The ratio of the adsorbed phase compared to the free gas has been significantly underestimated. The methods used herein allow accurate estimations of the true shale GIP resource and the relative quantity of adsorbed methane at in situ temperatures and pressures representative of deep shale formations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.