Abstract

The transition of conventional medicine to personalized medicine has paved the way for sensing new biomolecules. Consequently, this field attracted wide interest due to its capability to provide information on point of care basis. Multi-analyte sensors that emerged recently can perform quick and affordable analysis with minimum quantity of blood samples compared to traditional sensing of individual analytes. The present study focuses on the development of a quantum dot (Qd) based nanosensor for the simultaneous detection of copper and creatinine; two biologically relevant molecules. The sensor was designed by forming a complex of Qd with 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and picric acid through carboxylic bond formation of Qd-EDC with picric acid. The dual independent emissions of the Qd-EDC complex was used for the simultaneous detection of creatinine and copper by a turn on/turn off method and was successfully demonstrated with a sensitivity of nanomolar to millimolar, and micromolar to millimolar range respectively. The multianalyte sensor thus developed has quick response and works well under normal conditions of temperature and pH. It is also shown to work in cellular environment and blood serum. A simple image based detection of creatinine using the sensor strips has also been attempted by means of a mobile camera and validated with human blood samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call