Abstract

Rechargeable aqueous zincbatteriesare promising in next-generation sustainable energy storage. However, the low zinc (Zn) metal anode reversibility and utilization in aqueous electrolytes due to Zn corrosion and poor Zn2+ deposition kinetics significantly hinder the development of Zn-ion batteries. Here, a dual salt/dual solvent electrolyte composed of Zn(BF4)2/Zn(Ac)2 in water/TEGDME (tetraethylene glycol dimethyl ether) solvents to achieve reversible Zn anode at an ultrahigh depth of discharge (DOD) is developed. An "inner co-salt and outer co-solvent" synergistic effect in this unique dual salt/dual solvent system is revealed. Experimental results and theoretical calculations provide evidence that the ether co-solvent inhibits water activity by forming hydrogen bonding with the water and coordination effects with the proton in the outer Zn2+ solvation structure. Meanwhile, the anion of zinc acetate co-salt enters the inner Zn2+ solvation structure, thereby accelerating the desolvation kinetics. Strikingly, based on the electrolyte design, the zinc anode shows high reversibility at an ultrahigh utilization of 60% DOD with 99.80% Coulombic efficiency and 9.39 mAh cm-2 high capacity. The results far exceed the performance reported in electrolyte design work recently. The work provides fundamental insights into inner co-salt and outer co-solvent synergistic regulation in multifunctional electrolytes for reversible aqueous metal-ion batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.