Abstract

Cartilage damage and subchondral bone changes are closely connected in osteoarthritis. Nevertheless, how these processes are interlinked is, to date, incompletely understood. This study was undertaken to investigate the mechanistic role of a cartilage-derived protein, upper zone of growth plate and cartilage matrix-associated protein (UCMA), in osteoarthritis-related cartilage and bone changes. UCMA expression was assessed in healthy and osteoarthritic human and mouse cartilage. For analysis of cartilage and bone changes, osteoarthritis was induced by destabilization of the medial meniscus (DMM) in wild-type (WT) and Ucma-deficient mice. UCMA-collagen interactions, the effect of UCMA on aggrecanase activity, and the impact of recombinant UCMA on osteoclast differentiation were studied in vitro. UCMA was found to be overexpressed in human and mouse osteoarthritic cartilage. DMM-triggered cartilage changes, including increased structural damage, proteoglycan loss, and chondrocyte cell death, were aggravated in Ucma-deficient mice compared to WT littermates, thereby demonstrating the potential chondroprotective effects of UCMA. Moreover, UCMA inhibited ADAMTS-dependent aggrecanase activity and directly interacted with cartilage-specific collagen types. In contrast, osteoarthritis-related bone changes were significantly reduced in Ucma-deficient mice, showing less pronounced osteophyte formation and subchondral bone sclerosis. Mechanistically, UCMA directly promoted osteoclast differentiation in vitro. UCMA appears to link cartilage with bone changes in osteoarthritis by supporting cartilage integrity as an endogenous inhibitor of aggrecanases while also promoting osteoclastogenesis and subchondral bone turnover. Thus, UCMA represents an important link between cartilage and bone in osteoarthritis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.