Abstract

Graph Neural Networks (GNNs) have gained widespread usage and achieved remarkable success in various real-world applications. Nevertheless, recent studies reveal the vulnerability of GNNs to graph adversarial attacks that fool them by modifying graph structure. This vulnerability undermines the robustness of GNNs and poses significant security and privacy risks across various applications. Hence, it is crucial to develop robust GNN models that can effectively defend against such attacks. One simple approach is to remodel the graph. However, most existing methods cannot fully preserve the similarity relationship among the original nodes while learning the node representation required for reweighting the edges. Furthermore, they lack supervision information regarding adversarial perturbations, hampering their ability to recognize adversarial edges. To address these limitations, we propose a novel Dual Robust Graph Neural Network (DualRGNN) against graph adversarial attacks. DualRGNN first incorporates a node-similarity-preserving graph refining (SPGR) module to prune and refine the graph based on the learned node representations, which contain the original nodes’ similarity relationships, weakening the poisoning of graph adversarial attacks on graph data. DualRGNN then employs an adversarial-supervised graph attention (ASGAT) network to enhance the model’s capability in identifying adversarial edges by treating these edges as supervised signals. Through extensive experiments conducted on four benchmark datasets, DualRGNN has demonstrated remarkable robustness against various graph adversarial attacks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call