Abstract
Traditionally, domestic induction heating (IH) is designed to heat the ferromagnetic (FM) pan. However, it is incompetent to heat the non-FM (NFM) pan since the small equivalent resistance of the pan will easily result in overcurrent on the inverter. Inspired by the compensation network in the wireless power transfer (WPT), the series–parallel resonance (SPR) network with a relay switch is newly integrated into the IH technology to develop a dual-resonant topology-reconfigurable inverter for all-metal IH. The proposed system can be purposely configured to a half-bridge series resonant inverter with the pulse width modulation (PWM) to heat the FM pan, or a full-bridge SPR-based inverter with the phase shift control (PSC) to heat the NFM pan, respectively. Moreover, the output–input current gain of the SPR network equals the heating-coil quality factor, thereby readily eliminating the overcurrent issue of the inverter. For exemplification, a 1-kW prototype has been built with system efficiencies of 94.32% and 91.05% for heating FM and NFM pans, respectively. Finally, the proposed system can be evolved to achieve automatic load detection and impedance matching to ensure uninterrupted resonance. Both the calculated and measured results are given to validate the flexibility and feasibility of the proposed system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Journal of Emerging and Selected Topics in Power Electronics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.