Abstract

Hydrazine (N2H4) is carcinogenic, extremely toxic, and induces serious environmental contamination and physiological dysfunction; however, it is widely used as an industrial material. Hence, the development of a simple and effective analytical method to detect N2H4 detection in both environmental and biological sectors is warranted. In this work, an intramolecular charge transfer (ICT)-based fluorescent probe 1, namely (Z)− 1-(4-acetoxybenzyl)− 4-(1-cyano-2-(7-(diethylamino)− 2-oxo-2 H-chromen-3-yl)vinyl)pyridin-1-ium, was designed for dual-excitation (420 and 600 nm, excitation separations >160 nm), near infrared (NIR)-emissive, and ratiometric fluorescent detection of N2H4. The sensing behavior of probe 1 for N2H4 detection was shown to be available over a wide pH range, and detection limits of 68 nM and 569 nM were achieved at excitation wavelengths of 420 and 600 nm, respectively. In addition, probe 1 was successfully used to image mitochondrial N2H4 in living cells and zebrafish. Furthermore, the probe was also capable of determining hydrazine signals in test strips and environmental soil.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call