Abstract
Firefly algorithm (FA) has shown good performance on many engineering optimisation problems. Recent study has pointed out that FA suffers from slow convergence. To enhance the performance of FA, this paper presents a dual population based FA (called DPFA). In DPFA, the entire population consists of two sub-populations. A memetic FA (MFA) and the standard differential evolution are used to generate new solutions in different sub-populations. To verify the performance of DPFA, we test it on nine benchmark functions. Simulation results show that DPFA outperforms MFA and other improved FA algorithms. Finally, we use the proposed DPFA to solve wireless sensor network coverage optimisation problems. Results show that DPFA can also achieve promising solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Wireless and Mobile Computing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.