Abstract
AbstractDissolution of lithium polysulfides (LiPSs) is essential for fast cathode kinetics, but detrimental for anode stability, especially under lean electrolyte conditions. In this work, the phase separation phenomenon between solvents with different polarities (tetramethyl sulfone [TMS] and dibutyl ether [DBE]) is utilized to enable the design of a dual‐phase electrolyte. High‐polarity, high‐density TMS–lithium bis(trifluoromethanesulfonyl)imide–ammonium trifluoroacetate as the cathode electrolyte strongly solvates LiPSs, which propel the sulfur redox reaction. Moreover, the composite of DBE and a polymeric ion conductor serves as the anode electrolyte. The addition of DBE in the anode side effectively prevents the crossover of corrosive species (LiPSs and ammonia trifluoroacetate), enabling a significant improvement in Li‐metal anode stability. The electrode‐specific dual‐phase electrolyte design provides electrochemical performance superior to conventional electrolytes. Without additional electrode engineering, pouch cells assemble with the dual‐phase electrolyte cycle under a lean electrolyte (4 µL mg−1) and low‐Li‐excess condition (N/P = 3) for 120 cycles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.