Abstract

This paper describes a dual-output, reconfigurable integrated power management (IPM) ASIC for inductive power delivery. The proposed ASIC operates either as a current-mode (CM) rectifier or a boost converter by sharing the receiver (Rx) coil (LRx) to improve performance of inductive power transmission against the variations of Rx input power (PRx) and dual-output DC power (PL+ PHv). Conventional IPM structures either fail to generate regulated outputs (e.g., VL and VHv) when the required PL+ PHv exceeds PRx or suffer from low power-conversion efficiency (PCE) when PRx exceeds PL+ PHv due to voltage regulation and protection. To overcome these challenges, the proposed ASIC offers the unique capabilities of 1) generating multiple regulated outputs [Formula: see text] directly from LRx with single-stage conversion, 2) efficient CM operation with active rectification, enabled by adaptive switching control (ASC), 3) charging a large capacitor ( CS) with the purpose of operating as a shared-inductor boost converter (SBC), transferring energy from CS to CL and CHv, when , and 4) efficient voltage-power regulation (VPR). A proof-of-concept chip was fabricated in a 0.35-μm 2P4M standard CMOS process occupying 1.35-mm2 active area. In measurements, the proposed ASIC was able to successfully provide regulated [Formula: see text] and [Formula: see text] despite significant variations in PRx, PL, and PHv. Moreover, the chip extended the peak output power range by 750% and improved the PCE by 1.3 times and 8.1 times thanks to the ASC and VPR, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.