Abstract

Most large scale traffic information systems rely on a combination of fixed sensors (e.g. loop detectors, cameras) and user generated data, the latter in the form of probe traces sent by smartphones or GPS devices onboard vehicles. While this type of data is relatively inexpensive to gather, it can pose multiple privacy risks, even if the location tracks are anonymous. In particular, an issue could be the possibility for an attacker to infer user location tracks from anonymous location data, which affects users privacy. In this article, we propose a new framework for analyzing a variety of privacy problems arising in transportation systems. The state of traffic is modeled by the Lighthill–Whitham–Richards traffic flow model, which is a first order scalar conservation law with a concave flux function. Given a set of traffic flow data, we show that the constraints resulting from this partial differential equation are mixed integer linear inequalities for some decision variable. These constraints allow us to determine the likelihood of two distinct location tracks being generated by the same vehicle. We then use these model-based reidentification metrics to train an artificial neural network classifier. Numerical implementations are performed on experimental data from the Mobile Century experiment, and show that this framework significantly outperforms naive reidentification techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.