Abstract

In this paper, a dual-mode step-down DC-DC converter with an automatic mode-switching circuit is implemented in a 28 nm digital CMOS process and embedded in an RF transceiver chip to power the digital part. The proposed automatic mode-switching circuit includes a frequency-voltage conversion circuit that is designed according to the principle of charge redistribution on capacitance. The converter can switch modes according to the load without external intervention. This converter, along with a PMU sequencer, can also provide a solution for low-power design for system-on-chip applications. The IC occupies a total die area of 0.378 mm2. The input voltage of the converter is 3.3 V, the output voltage is 1.05 V, and the maximum load current can reach 1 A. The converter shows a conversion efficiency of not less than 81% at a full load range and can achieve a peak conversion efficiency of 91% when the load current is 100 mA. The load range of the PWM mode is 1 A to 50 mA, and that of the PFM mode is 100 mA to 1 mA. The combination of zero-crossing detection circuitry and freewheel switches can reduce energy loss and eliminate additional electromagnetic interference.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call