Abstract

In this work, 3D hierarchical Cu2SnS3@SnS2 flower assembled from nanopetals with sandwich-like Cu2SnS3-SnS2-Cu2SnS3 double interfacial heterojunction was successfully designed and synthesized on fluoride doped tin oxide (FTO) for photoelectrochemical (PEC) sensor by in situ electrodeposition p-type Cu2SnS3 nanoparticles on both inner and outer surfaces of n-type SnS2 nanopetals. The unique double interfacial heterojunction simultaneously combines 3D flower-like architectures to drastically increase the light trapping and absorption in visible-near infrared range (Vis-NIR), and dramatically inhibites the charge carrier recombination, which is crucial for boosting the PEC activity. Benefitting from the shape and compositional merits, the Cu2SnS3@SnS2 heterojunction possess dual-mode signal by controlling the electrodeposition time to manipulate the composition ratio of Cu2SnS3 and SnS2. The Cu2SnS3@SnS2/FTO electrode not only exhibits excellent photoeletro-reduction capacity for ultra-sensitive sensing trace persistent organic pollutant (nitrobenzene, NB), but also presents photoeletro-oxidization activity for high selective detection of L-cysteine (L-Cys) without any auxiliary enzyme under the light illumination. Dual mode sensor displayed superb performance for the detection of NB/L-Cys, showing a wide linear range from 100 pM to 300 μM/10 nM to 100 μM and a low detection limit (3S/N) of 68 pM/8.5 nM, respectively. Such a tunable double interfacial heterojunction design opened up new avenue for constructing multifunction PEC sensing platform.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.