Abstract

A novel frequency-based optimization algorithm, suitable to tune generic controllers involved in the dual loop architectures, is presented. A control scheme, based on standard industrial regulators, is adopted to incorporate nonlinear constraints reproducing technological limitations, in a control surfaces actuation system installed on a wind tunnel aeroelastic demonstrator. An integrated observer for disturbance rejection helps to meet one of the required constraints when aerodynamic loads are present. Numerical and experimental results are presented with the aim to design the actuation system and validate the methodology, considering both standard input signals and realistic command profiles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call