Abstract

Very large element counts (16,000-65,000) are required for 2-D arrays for 3-D rectilinear imaging. The difficulties in fabricating and interconnecting 2-D arrays with a large number of elements (>5,000) have limited the development of suitable transducers for 3-D rectilinear imaging. In this paper, we propose an alternative solution to this problem by using a dual-layer transducer array design. This design consists of 2 perpendicular 1-D arrays for clinical 3-D imaging of targets near the transducer. These targets include the breast, carotid artery, and musculoskeletal system. This transducer design reduces the fabrication complexity and the channel count, making 3-D rectilinear imaging more realizable. With this design, an effective N x N 2-D array can be developed using only N transmitters and N receivers. This benefit becomes very significant when N becomes greater than 128, for example. To demonstrate feasibility, we constructed a 4 x 4 cm prototype dual-layer array. The transmit array uses diced PZT-5H elements, and the receive array is a single sheet of undiced P[VDF-TrFE] copolymer. The receive elements are defined by the copper traces on the flexible interconnect circuit. The measured -6 dB fractional bandwidth was 80% with a center frequency of 4.8 MHz. At 5 MHz, the nearest neighbor crosstalk of the PZT array and PVDF array was -30.4 +/- 3.1 dB and -28.8 +/- 3.7 dB, respectively. This dual-layer transducer was interfaced with an Ultrasonix Sonix RP system, and a synthetic aperture 3-D data set was acquired. We then performed offline 3-D beamforming to obtain volumes of nylon wire targets. The theoretical lateral beamwidth was 0.52 mm compared with measured beamwidths of 0.65 mm and 0.67 mm in azimuth and elevation, respectively. Then, 3-D images of an 8 mm diameter anechoic cyst phantom were also acquired.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.